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Industrial X-Ray Image Segmentation is a Key Component
in Many Applications Crucial to LLNL and National Security

= Non-Destructive Evaluation (NDE) is an integral component in many
of Livermore’s mission critical areas:

GS

Stockpile Nuclear Hohlraum Material Transportation
Stewardship Fuel Target Characterization Security

= Goal: Identify objects, materials, and/or features in a noisy, cluttered,
and compromised environment

= Challenge: Current solutions are highly application dependent and
often inadequate
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Industrial NDE Faces a Number of Interconnected
Challenges such as Noise, Artifacts, and Lack of Resolution

= Data acquisition is limited by cost, time, energy spectrum, etc.
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Industrial NDE Faces a Number of Interconnected
Challenges such as Noise, Artifacts, and Lack of Resolution

= Data acquisition is limited by cost, time, energy spectrum, etc.
= Artifacts in the reconstruction, e.g., streaks, cupping, beam hardening

= Inaccurate segmentations, e.g., merged or split objects, partial
volume, unreliable material estimation

= Inconsistent detection causing both false positive and false negative
results

Current techniques tackle each stage independently
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This Project Integrates the Pipeline by Focusing on
Feedback Loops Between Stages
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Reconstruction - Meta- Segmentation —
Segmentation Segmentation Detection

= Reconstruction — Segmentation:
- Partial segmentations can enhance the reconstruction

= Segmentation — Detection:
- Semantic knowledge can enhance the segmentation
* Previous results can disambiguate difficult cases
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Segmentation and Detection Appear Distinct and Often
Apply Very Different Classes of Techniques

= Segmentation: Finding coherent regions in the image
« Edge detection

« Region growing or splitting
= Detection: Finding objects or configuration of objects

« Semantic features, e.g., volume, shape, material
« C(Classifiers based on training data
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Bottom-Up Image Segmentation Successively Merges
Elements to Form a Hierarchy of Segments
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= Challenges:
 Feature selection: How to determine candidate merges
« Merge order: Which elements to merge first
 Stopping criterion: What defines a segment
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= Problems with merge order and stopping criteria are due to missing
semantic information leading to irreversible errors in the hierarchy
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Bottom-Up Image Segmentation Successively Merges
Elements to Form a Hierarchy of Segments
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= Challenges:

« Merge order: Which elements to merge first
- Stopping criterion: What defines a segment

= Problems with merge order and stopping criteria are due to missing
semantic information leading to irreversible errors in the hierarchy

Avoid binding choices by exploring all potential hierarchies
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Create Multiple Randomized Hierarchies to Explore the
Space of Potentially Useful Segmentations

= Randomize the merge order to account for unavoidable mistakes

AAA. A

= Choose the “best” segments (not segmentations) based on:
- Consensus

 Labeled training data

« Unsupervised learning
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Multi-Hierarchy Consensus of Natural Images Produces
Superior Results Across A Wide Range of Scenes

Building Multiple Consensus Segmentation
Hierarchies Inference using Graph Cuts
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Guided Segmentation of Luggage Scans Using Training
Data of Multiple Threat Classes

= Find and classify multiple different threats in a collection of bags
scanned by the ALERT Center at Northeastern University

= Data: ~100 Scans containing;:
« Background: clothes, water, books, etc.
« Threats: Saline solution, modeling clay, rubber sheets
« Pseudo-threats: threat materials in small quantities

= Challenge: Improve segmentation of threat objects using labeled
training data
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Can you better segment a water bottle
because you have seen other bottles
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Integrate Multiple Hierarchies with a Trained Threat
Classifier to Construct per Class Consensus Segmentation

= Train threat classifier using labeled data and a set of custom designed
features, e.g., histograms, shape, volume, etc.
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Integrate Multiple Hierarchies with a Trained Threat
Classifier to Construct per Class Consensus Segmentation

Train threat classifier using labeled data and a set of custom designed
features, e.g., histograms, shape, volume, etc.

Construct multiple hierarchical segmentations by randomizing the
merge order

Classify subset segments into four classes (saline, clay, rubber, nt)

Build consensus segmentation within each class to construct a per-
object “best” segmentation

l& Lawrence Livermore National Laboratory

0 O = & 00

OO O O O o o O

O O O OO O O o O O O
o000




Results Using 20 Randomized Hierarchies - Bag 93

Volume rendering Human labeled data
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Results Using 20 Randomized Hierarchies - Bag 93

Multiple hierarchies

uL' Lawrence Livermore National Laboratory




Results Using 20 Randomized Hierarchies - Bag 80

Volume rendering
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Results Using 20 Randomized Hierarchies - Bag 93
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Segmentations based on Multiple Hierarchies Provide a
Flexible Framework to Integrate Semantic Information

l& Lawrence Livermore National Laboratory

Independent of the specific low or high level features
Easy to construct though potentially expensive
Expected to be robust against noise and artifacts

Various opportunities to integrate semantic knowledge, i.e., to
bridge the gap between segmentation and detection

Promising results for natural images and luggage scans




